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Recent research has shown that when constrained to causality, the optimal feedback con-
troller for an ocean wave energy converter (WEC) subjected to stochastic waves can be
solved as a non-standard Linear Quadratic-Gaussian (LQG) optimal control problem. In this
paper, we present a relaxation to the modeling assumptions that must be made to apply
this theory. Specifically, we propose a technique that uses the principle of Gaussian
Closure to accommodate nonlinear WEC dynamics in the synthesis of the optimal feedback
law. The technique is approximate, in the sense that it arrives at a computationally efficient
control synthesis technique through a Gaussian approximation of the stationary stochastic
response of the system. This approach allows for a wide range of nonlinear dynamical mod-
els to be considered, and also accommodates many complex loss mechanisms in the power
transmission system. The technique is demonstrated through simulation examples per-
taining to a flap-type WEC with a hydraulic power train.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

It has long been recognized that control theory can be used to optimize the power generated by wave energy converters
[1–7]. The determination of the optimal controller for a WEC system is predicated on knowledge of its dynamic behavior, as
well as a characterization of the sea state to which it is subjected. For WECs with linear dynamic models, control designs
typically presume harmonic waves, and are designed according to the same network-theoretic impedance-matching princi-
ples used in the design and operation of antenna arrays and waveguides [3]. However, true sea states are stochastic, with
power spectra that exhibit significant available energy over a nontrivial band of frequencies [8]. For such cases, controllers
derived via impedance matching theory must impose a feedback law which is the Hermitian adjoint (i.e., complex-conjugate
transpose) of the hydrodynamic impedance matrix for the WEC, at all frequencies. For this reason, it is sometimes called
‘‘complex conjugate control,” as in [5]. Such controllers are always anticausal, and thus require some anticipatory technique
in which present decisions are made with future wave information. This can be accomplished, for example, with the use of
deployable wave elevation sensors, coupled with model-predictive control techniques [9].
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Alternatively, controllers for WECs can be optimized subject to the constraint of causality. It was recently shown in [10]
that under the assumptions of linear dynamics, a stationary stochastic sea state, and unconstrained generator controllability,
the optimal WEC control problem is a special case of the Linear Quadratic Gaussian (LQG) control problem, which has a well-
known solution. In this paper, we present an extension of the LQG theory for optimal causal WEC control, which can be used
to accommodate nonlinearities in the system dynamics, and also can be used to compensate for complex loss mechanisms in
the power train of the WEC.
2. Mathematical modeling

In this section we develop the modeling assumptions for the WEC dynamics, wave oscillations, and transmission loss
models. These assumptions will carry over to the next section, in which an optimal controller will be synthesized, directly
from the models developed here. We present these assumptions at the most generic level for which it is still possible to apply
all the theory to follow. As such, we do not make specific assumptions here about the type of WEC being used, or the type of
power train. However, for simplicity, we will assume that the WEC has only one power-takeoff (PTO) device. Extensions to
the theory for multiple PTOs, embedded within a single WEC system, follow analogously, but require the introduction of an
added layer of algebraic complexity in the mathematical presentation.

2.1. WEC dynamic model

To begin, let vðtÞ and uðtÞ be the ‘‘potential” and ‘‘flow” variables associated with the PTO device, in which uðtÞ is pre-
sumed to be a variable which may be controlled. For example, supposing the PTO is a direct-drive electric machine, uðtÞ
would be the current in the stator coils of the machine (which can be controlled directly, via power electronics) and vðtÞ
is the back-EMF (i.e., internal voltage) of the machine. Likewise, supposing the PTO is a continuously-controllable hydraulic
ram, uðtÞ would by the hydraulic force of the ram, and vðtÞ would be its extension velocity. Irrespective of the technology
used, we make the assumption here that uðtÞ may be varied continuously.

We then assume that the WEC dynamics can be described to adequate precision by a nonlinear, finite-dimensional state
space model, i.e.,
_xcðtÞ ¼ F c xc tð Þ; f r tð Þ; f w tð Þð Þ þ BcuðtÞ ð1Þ
vðtÞ ¼ Hc xc tð Þð Þ ð2Þ
where xcðtÞ is the WEC state vector, nc is the associated state dimension, f rðtÞ is a vector of forces which capture the radiation
damping, f wðtÞ is a vector of forces which capture the incident wave excitation, and F cðxc; f r ; f wÞ andHcðxcÞ are differentiable
functions.

We assume that f wðtÞ is related to the wave elevation aðtÞ via a linear convolution; i.e.,
f wðtÞ ¼
Z 1

�1
hwðt � sÞaðsÞds ð3Þ
where hwð�Þ is the associated convolution kernel. Note that in the above, we account for the well-known non-causality of the
mapping between a and f w [11,12], by the fact that the integration domain above is over the entire real line s 2 ð�1;1Þ. We
assume that hw is square-integrable over this domain.

Regarding wave elevation aðtÞ we presume it to be a stationary stochastic process with known power spectral density
SaðxÞ, where x is in rad/s, and with the normalization convention that SaðxÞ is related to the mean-square value of aðtÞ via
E a2� � ¼ 1
2p

Z 1

�1
SaðxÞdx ð4Þ
where E½�� denotes the probabilistic expectation of the argument. For this assumption, it follows that the resultant power
spectral density of f w, denoted SwðxÞ, is
SwðxÞ ¼ ĥwðjxÞSaðxÞĥT
wð�jxÞ ð5Þ
where ĥwðsÞ is the Laplace transform of convolution kernel hwðtÞ; i.e.,
ĥwðsÞ ¼
Z 1

�1
hwðtÞe�stdt ð6Þ
and j ¼
ffiffiffiffiffiffiffi
�1

p
. Note that in the construction of SwðxÞ as above, it is immaterial that hwð�Þ is a non-causal convolution kernel.

Pausing for a moment, we consider the implications of the non-causality of hwð�Þ on the stochastic dynamic model we
have described. Note that the input to the dynamic model is actually f wðtÞ, which has spectral density SwðxÞ. The wave ele-
vation aðtÞ, although its spectrum SaðxÞ is important for the purpose of deriving SwðxÞ, does not enter directly into the
dynamic model. Meanwhile, there is a causal relationship between f wðtÞ and xcðtÞ. We conclude that in the treatment of
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the WEC dynamics, issues arising from the non-causality of the mapping from aðtÞ to f wðtÞ are avoided by directly modeling
the incident wave force f wðtÞ as a stationary stochastic process with spectrum SwðxÞ, computed as above.

We can think of this observation in another, equivalent way. Consider the case in which we revise the model such that
aðtÞ is actually the wave elevation at some location other than that of theWEC [12]. To revise our model above, to account for

this, we would merely need to introduce a frequency-dependent delay TðxÞ into the transfer function ĥwðjxÞ, to account for

the propagation of the incident wave, to or from the WEC site. Specifically, this would involve the multiplication of ĥwðjxÞ
above, by ejxTðxÞ. Propagating this through the analysis, we see that this results in the same spectrum SwðxÞ as before,
because in the updated version of (5), ejxTðxÞe�jxTðxÞ ¼ 1. This implies that by choosing aðtÞ to be sufficiently far ‘‘up wave”
from the WEC site, we can effectively create a model which exhibits causality between aðtÞ and f wðtÞ, but with exactly the
same spectrum for SwðxÞ as before.

Regarding the radiation forces f rðtÞ, we assume they are the consequence of a linear convolution on xcðtÞ, i.e.,
f rðtÞ ¼
Z t

�1
hrðt � sÞxcðsÞds ð7Þ
where hrð�Þ is the associated convolution kernel. Note that, unlike the convolution model for f wðtÞ, the radiation force is
known to be causal, and consequently the kernel hrðtÞ has support over t 2 ½0;1Þ. However, similarly to the case with

f wðtÞ, we assume hrðtÞ is square-integrable, with Fourier transform ĥrðjxÞ.
2.2. Finite-dimensional approximation

In order to implement the theories to be investigated in this paper, it is most straight-forward to first approximate all
components of the dynamic system by finite-dimensional state spaces. Specifically, the following must be found:

1. Matrices fAr;Br ;Cr ;Drg of appropriate dimension, such that
ĥrðjxÞ � ĝrðjxÞ ð8Þ

where ĝrðsÞ is an asymptotically-stable, rational transfer function

ĝrðsÞ ¼ Dr þ Cr sI � Ar½ ��1Br ð9Þ
2. Matrices fAw;Bw;Cwg of appropriate dimension, such that
SwðxÞ � ĝwðjxÞĝT
wð�jxÞ ð10Þ

where ĝwðsÞ is an asymptotically-stable, minimum-phase, rational transfer function

ĝwðsÞ ¼ Cw sI � Aw½ ��1Bw ð11Þ

Determination of these finite-dimensional models is nontrivial, because for WEC systems ĥwðsÞ and ĥrðsÞ are typically irra-
tional functions of s, implying that they cannot be realized precisely by finite-dimensional state spaces. Moreover, the stan-
dard design spectra for SaðxÞ, such as the JONSWAP spectrum, do not lend themselves to rational spectral factorizations. (In

other words, SaðxÞ cannot be expressed as a ratio of finite-order polynomials in x2.) Consequently, even if ĥwðsÞ were a
rational transfer function, use of an irrational spectrum for SaðxÞ implies, through (5), that there will not exist a rational
spectral factorization for SwðxÞ as in (10).

Obtaining ĝrðsÞ can be accomplished via any of a variety of deterministic system realization algorithms. Here, we make
use of the subspace-based identification algorithm discussed in [13], which has the advantage of being non-iterative, and

easily-scalable to problems in which ĥrðsÞ is a matrix transfer function of large dimension. Additionally, the technique is sys-
tematic to implement, for a specified model order nr .

The problem of obtaining ĝwðsÞ is one of approximate spectral factorization. Because it is only necessary to find ĝwðsÞ such
that (10) constitutes an acceptable approximation, it is only the magnitude of ĝwðjxÞ that affects the quality of the spectral
estimate (i.e., not the phase). As with the estimation of ĝrðsÞ, we resort to subspace identification techniques, although the
specific algorithm is different. Here, we make use of the rational spectral factorization algorithm developed by Akcay [14],
which systematically determines an approximate system of desired order nw.

For both ĝrðsÞ and ĝwðsÞ, the subspace algorithms referenced above identify discrete-time models, and here we do not pro-
pose any changes to these identification procedures. Consequently, we will not give a full exposition of the steps involved.
The identified discrete-time models can be converted to continuous-time ones via any of several mappings, such as the bilin-
ear mapping, which we assume has been used here.
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2.3. Augmented system

The finite-dimensionalization of the radiation and incident wave forces are expressed in the time domain by the state
spaces
_xrðtÞ ¼ ArxrðtÞ þ BrxcðtÞ ð12Þ
f rðtÞ ¼ CrxrðtÞ þ DrxcðtÞ ð13Þ
and
_xwðtÞ ¼ AwxwðtÞ þ BwwðtÞ ð14Þ
f wðtÞ ¼ CwxwðtÞ ð15Þ
where wðtÞ is a white-noise stochastic process with spectral intensity matrix equal to I, the identity matrix. (Equivalently,
wðtÞ has autocorrelation function EfwðtÞwTðsÞg ¼ Idðt � sÞ where dð�Þ is the Dirac delta function.) We consequently have that

the entire WEC system can be augmented into a single stochastic state space, as x ¼ xTc xTr xTw
� �T , governed by the

dynamics
_xðtÞ ¼ F xðtÞð Þ þ BuðtÞ þ GwðtÞ ð16Þ
vðtÞ ¼ H xðtÞð Þ ð17Þ
where
Fðx;uÞ ¼
F c x; Crxr þ Drxc; Cwxwð Þ

Arxr þ Brxc
Awxw

264
375 ð18Þ

G ¼
0
0
Bw

264
375 B ¼

Bc

0
0

264
375 HðxÞ ¼ Hc xcð Þ ð19Þ
2.4. Power generation objective and loss model

The instantaneous power absorbed by the PTO is
PAðtÞ ¼ uðtÞvðtÞ ð20Þ

The power generated is this power, minus the transmission losses, i.e.,
PGðtÞ ¼ PAðtÞ � PTðtÞ ð21Þ

The transmission loss model will depend on the type of technology that comprises the power train. Here, we merely assume
that PTðtÞ is some function of uðtÞ and vðtÞ, i.e.,
PTðtÞ ¼ l uðtÞ;vðtÞð Þ ð22Þ

where lðu;vÞ P 0, with the equality holding only if u ¼ 0. Note that even this general model is a simplification of the losses
that occur in a real transmission system, which has its own dynamics, resulting in a value of PTðtÞ at time twhich depends on
both present and past values of u and v. By contrast, here we assume the relationship to be instantaneous. This assumption is
justified for systems in which the internal power train dynamics are sufficiently faster than the wave-induced mechanical
dynamics of the WEC.

2.5. Control design objective

We assume the vector yðtÞ of outputs available for feedback are linearly related to the augmented state vector xðtÞ; i.e.,

yðtÞ ¼ CxðtÞ ð23Þ
We are then interested in designing a controller that constitutes a causal feedback law / : y ! u. The optimization objective
is to maximize
J ¼ E PGf g ð24Þ

where the expectation is assumed to be taken in stationarity.
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3. Causal control design: linear case

Consider the case in which the dynamics of the system are linear; i.e., where FðxÞ and HðxÞ are linear functions of their
arguments. In this case, xðtÞ has the linear stochastic state space
_xðtÞ ¼ AxðtÞ þ BuðtÞ þ GwðtÞ ð25Þ
vðtÞ ¼ HxðtÞ ð26Þ
Assume, further, that the loss model lðu;vÞ is a quadratic form; i.e.,
lðu;vÞ ¼ u
v

� �T R S
ST Q

� �
u
v

� �
ð27Þ
where R ¼ RT is positive-definite and Q � STR�1S is positive-semidefinite. The optimal control objective is to maximize
J ¼ �E u

v

� �T R S� 1
2 I

ST � 1
2 I Q

" #
u

v

� �( )
ð28Þ
In this case, we have that the solution to the optimal causal control problem (i.e., the optimal /) can be solved via Linear
Quadratic Gaussian (LQG) control theory. This theory has been illustrated in [10] for wave energy converters specifically.
Here, we merely summarize the results, beginning with the following theorem.

Theorem 1. Let x have linear dynamics as described above, and assume the transfer function �H sI � A½ ��1B is positive real. Let
/ : y ! u be any causal mapping (not necessarily linear) for which the closed-loop system is asymptotically stable. Then
J ¼ �trfGTPGg � E ku� Kxk2R
n o

ð29Þ
where P ¼ PT is the solution to Riccati equation
0 ¼ HTQH þ ATP þ PA� �BTP þ 1
2
I � S

� �
H

� �T
R�1 �BTP þ 1

2
I � S

� �
H

� �
ð30Þ
and where K is related to P via
K ¼ R�1 �BTP þ 1
2
I � S

� �
H

� �
ð31Þ
Regarding this theorem, several comments can be made:

� If the full state x were available for feedback (i.e, if y ¼ x), then the optimal controller / would be a linear feedback func-
tion of the system state; i.e., uðtÞ ¼ KxðtÞ.
� The physical limit on the optimal causal control performance (independently of the states available for feedback) is
Jmax ¼ �trfGTPGg ð32Þ
� The ‘‘positive real” assumption made in the theorem is always valid for physical systems, on thermodynamic grounds. If it
were not true, then it would be the case that in the absence of waves, the WEC could be excited by uðtÞ in such a way as to
result in positive average absorbed power.

� A controller / : y ! u can be made to approach the performance Jmax through the design of a Luenberger observer. In this
formulation we would have that
/ :
_n ¼ Anþ L y� Cnð Þ
u ¼ Kn

(
ð33Þ

In the controller as shown above, n is the observer state, and L is the observer gain.
� One straight-forward way to design L is via a Kalman–Bucy filter. To do this, one would assume y to be corrupted with
fictitious noise with spectral intensity matrix N, resulting in L being formulated as
L ¼ WCTN�1 ð34Þ
where the estimation residual covariance W is the positive-definite, maximizing solution to Riccati equation

0 ¼ GGT þ AW þWAT �WCTN�1CW ð35Þ
With the observer so designed, the optimal power generation for the output-feedback system has a closed-form, equal to

J ¼ �trfGTPGg � RKWKT ð36Þ
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Remembering thatW is positive definite, we see that the smaller we makeW, the closer we approach the theoretical cau-
sal limit on performance, achieved with full-state feedback. Because W can be shown to decrease monotonically with N,
there is consequently a tradeoff between power generation and observer bandwidth.

4. Gaussian Closure techniques

The LQG solution to the optimalWEC control problem, as described in the previous section, relies on a number of assump-
tions, which in this paper we wish to relax. Specifically:

� It requires the dynamics of the system (i.e., the functions in F ) to be linear in x.
� It requires the loss model (i.e., lðu;vÞ) to be quadratic in ðu;vÞ, with the stated positive-definiteness conditions.
� It requires that the functional relationship between x and v (i.e., the function H) be linear.

When these things are true, it can be shown that the optimal feedback relationship between x and u is also linear and static;
i.e., u ¼ Kx. As a consequence of the fact that the closed-loop system is linear, it is known that the optimal probability density
function (pdf) is zero-mean Gaussian; i.e.,
pðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞn det S

p exp �1
2
xTS�1x

	 

ð37Þ
where S ¼ EfxxTg is the stationary covariance matrix, equal to the solution to the closed-loop Lyapunov equation
0 ¼ Aþ BK½ �Sþ S Aþ BK½ �T þ GGT ð38Þ

However, if any of the three assumptions made above are violated, then the optimal relationship between u and x is no
longer guaranteed to be linear. Due to this fact (as well as the existence of any nonlinear terms in F ), the optimal pdf with
optimal state feedback will in general not be Gaussian. In this situation, the determination of a theorem analogous to The-
orem 1 is generally not possible.

However, we can develop approximate techniques for optimization of a full-state feedback controller for this more gen-
eral case, by approximating the closed-loop pdf as Gaussian. This approach, described below, is called Gaussian Closure [15]. It
is a generalization of a class of popular techniques used in the analysis of stochastic vibrations, which are alternatively called
statistical or equivalent linearization [16]. It is, likewise, an extension of techniques in the literature on stochastic control,
which are sometimes called stochastic describing function analysis [17].

To describe the Gaussian Closure technique, first let us assume some full-state feedback law / : x ! u. Consequently, we
have a closed-loop dynamic system governed by
_x ¼ F clðxÞ þ Gw ð39Þ

where F clðxÞ ¼ FðxÞ þ B/ðxÞ, and wðtÞ is (as before) a white noise process with spectral intensity I. We then have that from
nonlinear Itô calculus:
d
dt

EfxðtÞxTðtÞg ¼ E xðtÞF T
clðxÞ

� �þ E F clðxÞxT
� �þ GGT ð40Þ
In the Gaussian Closure technique, we assume pðxÞ to be equal to (37), parametrized by some covariance matrix Swhich is to
be determined. To determine S, we use insert the assumed Gaussian form of pðxÞ into the expectations in (40) and solve for
the value of S that brings about weak stationarity; i.e., d

dt EfxðtÞxTðtÞg ¼ 0. A key result in the analysis, which simplifies the
mathematics, is the fact that for pðxÞ with the Gaussian form in (37), and F clðxÞ differentiable, it follows that
EfF clðxÞxTg ¼ E d
dx

F clðxÞ
	 


S ð41Þ
where the vector derivative d
dx constitutes the evaluation of the Jacobian of F clðxÞ, i.e.,
d
dx

F clðxÞ ¼ d
dx1

F clðxÞ � � � d
dxn

F clðxÞ
h i

ð42Þ
Consequently, we have that under the Gaussian Closure assumption, S satisfies the ‘‘Lyapunov-like” equation
0 ¼ bAðSÞSþ SbATðSÞ þ GGT ð43Þ

where
bAðSÞ ¼ E d
dx

F clðxÞ
	 


ð44Þ

¼
Z 1

�1
� � �
Z 1

�1
pðx; SÞ d

dx
F clðxÞdx1 . . . dxn ð45Þ
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where we have used pðx; SÞ to make explicit the dependency of the Gaussian integral above, on S.
We note that in many cases with simple nonlinearities, Gaussian integral (45) can be solved in closed form, symbolically,

in terms of S. This will be the case for the illustrative example we discuss at the end of the paper. In such situations, we can
view Eq. (43) as a nonlinear algebraic equation for S. Although it only has a closed form in very special situations, it may be
solved iteratively by any of several algorithms. A straight-forward and reliable approach involves the evaluation of the
sequence fS0; S1; S2; . . .g according to the iteration
Skþ1 ¼ Sk þ � bAðSkÞSk þ SkbATðSkÞ þ GGT
n o

ð46Þ
which for many problems can be shown to converge for sufficiently small �, and for a positive-definite initial condition for S0.
A faster solution algorithm iterates according to the repetitive solution to Lyapunov equations of the form
0 ¼ bAðSkÞSkþ1 þ Skþ1
bAðSkÞ þ GGT ð47Þ
although this algorithm does not in general guarantee convergence.
Regardless of the algorithm used to find the stationary solution to S, once it is found we may also find the approximate

stationary performance J. Again making use of pðx; SÞ as an estimate for the true stationary pdf, we then have that
J ¼ Efuv � lðu; vÞg ð48Þ
¼
Z 1

�1
� � �
Z 1

�1
pðx; SÞf/ðxÞHðxÞ � lð/ðxÞ;HðxÞÞgdx1 . . .dxn ð49Þ
As with Gaussian integral (45), in cases where the functions /ðxÞ;HðxÞ, and lðu; vÞ are of sufficient simplicity, it is often pos-
sible to solve (49) symbollically, as a function of S. In such instances, J is merely an algebraic computation, made with the
solution obtained for (43).

As has been shown above, Gaussian Closure is useful because it provides an analytically-tractable tool for approximate
analysis of nonlinear stochastic dynamics. However it is also important to mention its limitations. In general it is difficult
to derive bounds on the approximation errors resulting from the assumption that pðxÞ is Gaussian. In particular, there is gen-
erally no convenient analytical tool to assess the error in performance J. It is therefore important to verify the accuracy in the
assessment of J, which can be done via numerical simulation. Additionally, because Gaussian Closure techniques calculate
performance based only on weak satisfaction of conditions for stationary response, they may lead to significant errors in pre-
dicting the distribution of extreme values for xðtÞ. Indeed, it is possible that the dynamics of xðtÞ may not even be globally
stable (i.e., xðtÞ may have some finite region of attraction), while still resulting in a stationary solution for S under Gaussian
Closure. It is therefore important to be mindful of the stability robustness of the feedback law /ðxÞ which is being designed,
and to assess this robustness via other techniques.

5. Causal control for nonlinear WEC models

In this section, we describe an approach that leverages the Gaussian Closure analysis from the previous section, to opti-
mize a controller for a WEC with nonlinearities in F and H, and a loss model lðu;vÞ that is more complex than a quadratic
expression. Although we will assume the dynamics and loss models to be nonlinear, we will still assume a linear feedback
law for the controller. Furthermore, we will develop the control design approach in two steps, similar to the approach that
arises naturally for the linear case, by assuming a certainty-equivalence control paradigm. In this paradigm, the first step is
to optimize a hypothetical full-state feedback law, and the second step is to design an observer to estimate the full state from
feedback measurements. Certainty-equivalence then combines these steps by implementing the full-state feedback law on
the observed states, resulting in a dynamic output feedback controller.

5.1. Full-state feedback design

Using the Gaussian Closure techniques from the previous section, we now discuss the optimization of a linear full-state
feedback law / : x ! u of the form
u ¼ Kx ð50Þ

for the nonlinear system described in Sections 2.3 and 2.4. We have that the closed-loop system dynamics are governed by
F clðxÞ ¼ FðxÞ þ BKx ð51Þ

We note that due to the linearity of the feedback term,
bAðSÞ ¼ bA0ðSÞ þ BK ð52Þ

where
bA0ðSÞ ¼
Z 1

�1
� � �
Z 1

�1
pðx; SÞ d

dx
FðxÞdx1 . . .dxn ð53Þ
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and we assume that bA0ðSÞ can be evaluated as an analytical function of S. Thus, for a given K, the corresponding covariance
matrix is the solution to the nonlinear equation
0 ¼ bA0ðSÞSþ SbAT
0ðSÞ þ BKSþ SKTBT þ GGT ð54Þ
Our objective is to optimize J, evaluated under Gaussian Closure, expressed in (49). The Gaussian Closure assumption,
together with the linear feedback assumption, allow us to assume x and u are jointly-Gaussian, with covariance matrix
R ¼ E x

u

� �
x

u

� �T( )
¼ I

K

� �
S

I

K

� �T
ð55Þ
We assume that (49) can be solved analytically, in terms of R; i.e., we assume (49) can be reduced to a known, analytical
function w such that
J ¼ wðRÞ ð56Þ

To ease the notation, we will suppress the functional dependency of R on ðS;KÞ, but this dependency will be implicit in what
follows.

Let the optimal value of K be denoted KI. Then our objective becomes the following algebraic minimization:
KI ¼ sol
Maximize : wðRÞ
Over : S;K

Subject to : Eq:ð54Þ

8><>: ð57Þ
This algebraic optimization does not, in general, have a closed-form solution. However, if the function wðRÞ and bA0ðSÞ can be
expressed analytically, then efficient gradient-based algorithms can be used to converge to the maximizing K.

In order to solve this problem, we make use of Lagrange multipliers. First, define the Hamiltonian function as the opti-
mization objective, augmented with a penalty function for constraint (54); i.e.,
!ðK; S; PÞ ¼ wðRÞ þ tr P bA0ðSÞSþ SbAT
0ðSÞ þ BKSþ SKTBT þ GGT

h in o
ð58Þ
where P ¼ PT is a matrix of Lagrange multipliers which enforces (54). We then re-frame the optimization as an uncon-
strained minimax problem:
ðKI; SI; PIÞ ¼ max
K;S

min
P

!ðK; S; PÞ ð59Þ
We then have that the solution must lie at a saddle point in the three variables, thus requiring that the gradient of ! be zero
with respect to all three variables. Evaluating these gradients, we have that @!=@P is
@!
@P

¼ bA0ðSÞSþ SbAT
0ðSÞ þ BKSþ SKTBT þ GGT ð60Þ
which is the right-hand side of (54). Meanwhile,
@!
@S

¼ @w
@S

þ bA0ðSÞ þ BK
h iT

P þ P bA0ðSÞ þ BK
h i

þ 2HðP; SÞ ð61Þ
where HðP; SÞ is a symmetric matrix, evaluated element-by-element as
HijðP; SÞ ¼ tr SP
@bA0ðSÞ
@Sij

( )
ð62Þ
Finally, we have the gradient with respect to K, as
@!
@K

¼ @w
@K

þ 2BTPS ð63Þ
To solve for optimality, we note that for any given value of K, the value of S can be found which renders @!=@P ¼ 0 via
solution to (54), the constraint equation. As mentioned in the previous section, although this equation is algebraically non-
linear and does not have a closed-form solution, convergent algorithms can be used to solve it. Using such an algorithm, we
can eliminate S from the optimization by solving for it, given K. Next we note that @!=@S (i.e., Eq. (61)) is linear in P, given
ðS;KÞ. Consequently, P may be solved directly from ðS;KÞ in closed form. Given these observations, we arrive at an iterative
steepest-ascent algorithm to optimize K, starting from some initial condition Kð0Þ, each iteration of which is comprised of the
following steps:

1. Given KðkÞ, find the associated SðkÞ to satisfy (54), via iterative convergence.

2. Given ðKðkÞ; SðkÞÞ, solve for PðkÞ by setting @!=@S ¼ 0 and solving (61), which is linear in P.
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3. Given ðKðkÞ; SðkÞ; PðkÞÞ, update KðkÞ ! Kðkþ1Þ via
Kðkþ1Þ ¼ KðkÞ þ d
@!
@K






KðkÞ ;SðkÞ ;PðkÞ

ð64Þ

for an appropriate step size d.

5.2. Observer design

Because the full state xðtÞ is not available for feedback, the state must be estimated via an observer. This was discussed in
Section 3 for the case of linear control design, leading to the observer-based controller (33), in which nðtÞ is the state esti-
mate. A similar procedure can be used here. The most accurate technique would be to exploit knowledge of the true non-
linear differential equation for the system, via an extended Kalman filter. However, here we employ an approach which,
while less accurate, is simpler and produces a linear feedback law. In this approach, we merely implement a linear observer,

just as in (33) except that we use bA0ðSÞ in replacement for the A matrix for the linear case; i.e.,
/ :
_n ¼ bA0ðSÞnþ Lðy� CxÞ
u ¼ Kn

(
ð65Þ
where S is the solution to (54) with the optimal K. In this case the linear observer gain L can be designed just as for the case of

linear dynamics, via the Kalman filter Eqs. (34) and (35), again with bA0ðSÞ substituted for A in (35). Our approach here is
somewhat ad-hoc, in the sense that we are using a linear observer to estimate the true state of a nonlinear dynamic system.
However, for systems for which the true stationary pdf is approximately Gaussian, this approach will provide state estimates
which are very close.

The feedback controller designed by the proposed methodology effectively approximates the nonlinear dynamic system
via a linear one. The discrepancy between the true and approximate systems introduces unmodeled dynamics into the
closed-loop system, and the control design approach proposed here may not be robust to these unmodeled dynamics. Var-
ious approaches from robust control theory might be used to remedy this, by accounting for the unmodeled dynamics in the
synthesis of K. However, here we propose a very simple approach, which takes advantage of the connection between the
optimal energy harvesting problem and LQG control theory.

Specifically, this connection allows us to make use of classical Loop Transfer Recovery (LTR) techniques [18] to enhance
the stability margins of the closed-loop system. Essentially the technique is executed by designing the observer gain L as
described in Section 3, as a Kalman filter with fictitious measurement noise intensity matrix N. However, we modify this
procedure to also include a supplemental fictitious excitation noise of intensity qP 0, which enters at the same location
as the control signal uðtÞ. This modifies the algebraic Riccati equation for W in (35) to
0 ¼ bA0ðSÞW þWbAT
0ðSÞ þ GGT þ BqBT �WCTN�1CW ð66Þ
It turns out that the gain and phase margins associated with the loop gain of the control system can be enhanced as q is
increased from zero. However, the performance of the closed-loop system will simultaneously deteriorate as q is increased,
due to progressively poorer tracking of the state vector by the observer.

Consequently, the choice of q constitutes a tradeoff between the robustness of the controller as it is implemented on the
true nonlinear system, and the nominal performance achieved by the controller as it is implemented on the approximate
system obtained by Gaussian Closure. It is therefore important to choose a value of qwhich accomplishes a reasonable trade-
off between these two competing objectives. To do this, we first note that for a given value of q, we may approximate the

closed-loop performance with output feedback by first solving the covariance matrix for the coupled system v ¼ xT nT
� �T ,

which we denote X ¼ EfvvTg, as the solution to the Lyapunov equation
0 ¼ AXþXAT þ GGT ð67Þ

where
A ¼
bA0ðSÞ BK

LC bA0ðSÞ � LC

" #
G ¼ G

0

� �
ð68Þ
Now, for the output-feedback case we have that
R ¼ I 0
0 K

� �
X

I 0
0 K

� �T
ð69Þ
from which we approximate the closed-loop performance as before; i.e., J ¼ wðRÞ. Using these calculations, we can evaluate
the performance for the case with q ¼ 0, establishing a baseline. Then, q can be iteratively increased until some small per-
centage of baseline performance (say, 1-2%) is sacrificed. This value of q can then be used as a design value.
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6. Example

In this section we apply the control design technique discussed above, to the flap-type WEC illustrated in Fig. 1. The
model for this WEC is based on a system presently in development by Resolute Marine Energy, Inc. The purpose of this exam-
ple is to provide a case study regarding the application of the above design approach in the context of an actual WEC system.
It is not the purpose of this example to provide a full exposition of the modeling of a flap-type WEC, which has been well-
documented (see, e.g., [19] and the references therein). As such, many of the details regarding the model will not be given,
nor will many of the hardware specifications.

Mechanical power is extracted from the flap via a controllable pump, situated at the flap joint. Thus we have that u is the
effective torque imposed on the flap by the PTO, and v is the angular velocity of the flap. The PTO torque is assumed to be
continuously-variable, with sufficient bandwidth to implement a dynamic feedback control law. The power transmission
system is also hydraulic, and the implications of this for the transmission loss model will be discussed in Section 6.2.

6.1. Dynamic modeling

The mechanical dynamic state xcðtÞ of the flap is comprised of its angular position h, and its angular velocity v ¼ _h; i.e.,
xc ¼ h v½ �T ð70Þ

The differential equation for the system model is then
d
dt

h

v

� �
¼ v

�u� f b � f d þ f w cos h� f rð Þ=If

� �
ð71Þ
where the physical meanings of the various terms above are:

� If is the rotational inertia of the submerged flap, assumed to be constant.
� f b is the nonlinear hydrostatic buoyancy torque of the flap, modeled as f b ¼ kb sin h, where kb is a buoyancy constant.
� f d is the nonlinear viscous damping torque of the flap due to fluid-structure interaction, modeled as f d ¼ jjvdjvd where j
is a constant and vd is the velocity of the tip of the flap, relative to the flow of fluid past it.

� f r is the radiation damping torque.
� f w is the incident wave torque on the flap when it is oriented vertically. Note that in the equation above we assume that
the incident wave torque applied to the flap for the dynamically-excited system is this value, multiplied by cos h. This is to
reflect the reduction in the wave-induced torque as the flap transitions from its vertical to horizontal orientations.

The specifics regarding the characterization of the above model, including the derivation of the various parameters, as
well as the numerical solutions for kernels hwðtÞ and hrðtÞ, is beyond the scope of this paper. Following the procedures out-
lined in Section 2, the above model can be augmented with finite-dimensional models for f r and f w, to create a finite-
dimensional nonlinear dynamical model for the entire WEC system, of the following form:
_x ¼ Axþ Buþ Bh sin hþ Bwf w cos hþ Bdjvdjvd þ Gw ð72Þ

with
h

v
vd

f w

26664
37775 ¼

Ch

Cv
Cd

Cw

26664
37775x ð73Þ
To apply Gaussian Closure techniques to this problem, we must find an analytical expression for bA0ðSÞ. We have that
θ
v

u
PUMP HYDRAULICS

ACCUMULATOR GENERATOR

Fig. 1. Diagram of flap-type WEC.
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E FxT
� � ¼ E d

dx
F

	 

S ð74Þ
Taking the Jacobian of F gives
d
dx

F ¼ Aþ Bh
d
dx

sin hþ Bw
d
dx

fw cos hð Þ þ Bd
d
dx

jvdjvdð Þ ð75Þ

¼ Aþ Bh cos h
dh
dx

þ Bw cos h
dfw
dx

� Bwf w sin h
dh
dx

þ 2Bdjvdjdvd

dx
ð76Þ

¼ Aþ Bh cos hCh þ Bw cos hCw � Bwf w sin hCh þ 2BdjvdjCd ð77Þ
To find bA0ðSÞ, we must take expectations of these expressions. To do this, we note that the first term A is constant and thus
has its expectation is equal to itself. The second and third terms involve expectations over h which, to be consistent with
prior assumption, is Gaussian-distributed with zero mean and variance
Sh ¼ ChSC
T
h ð78Þ
To evaluate the expectations for these terms, we note that
E cos hf g ¼
Z 1

�1

1ffiffiffiffiffiffiffiffiffiffiffi
2pSh

p exp � h2

2Sh

( )
cos hdh ð79Þ

¼ exp �1
2
Sh

	 

ð80Þ
Regarding the fourth term, we have that
E f w sin hf g ¼ E Cwx sin hf g ð81Þ
¼ E ðsin hÞxT� �

CT
w ð82Þ

¼ E d
dx

sin h

	 

SCT

w ð83Þ

¼ E cos hf gChSC
T
w ð84Þ

¼ exp �1
2
Sh

	 

ChSC

T
w ð85Þ
Finally, the last term is an expectation taken over vd, which is Gaussian distributed with variance
Sd ¼ CdSC
T
d ð86Þ
and
E jvdjf g ¼
Z 1

�1

1ffiffiffiffiffiffiffiffiffiffiffi
2pSd

p exp � v2
d

2Sd

	 

jvdjdvd ð87Þ

¼
ffiffiffiffiffiffiffiffiffi
2
p
Sd

r
ð88Þ
Thus, the symbolic expression for bA0ðSÞ is
bA0ðSÞ ¼ Aþ Bh exp �1
2
Sh

	 

Ch þ Bw exp �1

2
Sh

	 

Cw � Bw exp �1

2
Sh

	 

ChSC

T
wCh þ Bd

ffiffiffiffiffiffiffiffiffi
8
p
Sd

r
Cd ð89Þ
where Sh and Sd are related to S via (78) and (86) respectively.

6.2. Transmission loss model

We assume that the PTO is controlled via a variable-displacement hydraulic pump, which can be used to continuously
regulate the control torque uðtÞ. We assume the pump has a static efficiency gp. We assume that the pump is interfaced with
a hydraulic accumulator maintained at a constant pressure W, through a hydraulic line with flow-independent viscosity c.
Hydraulic power is then delivered from the accumulator to a variable-displacement motor, which drives a generator.
We assume the conversion process from accumulator to generator can be modeled as possessing a static conversion
efficiency gm.

Subject to these assumptions, the power generation (i.e., PG ¼ PA � lðu;vÞ) can be approximated as the following
expression
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PG ¼
1
gm

1
gp
PA � 1

g2pP0
P2
A

� �
: PA < 0

gm gpPA � g2p
P0
P2
A

� �
: PA > 0

8>><>>: ð90Þ
where P0 ¼ W2=c is a physical constant associated with the transmission system. The above model is an accurate represen-
tation of the transmission losses in the system, assuming that jPAj � P0.

To get a better idea for what Eq. (90) signifies, Fig. 2 shows the relationship between PG and PA. We can see that for PA > 0
(i.e., when the PTO absorbs energy from the flap) the ðPA; PGÞ curve is quadratic, and there is a peak value of PG which is phys-
ically possible, for a given P0, which occurs when PA ¼ P0=2gp. As mentioned, the model is only accurate if PA is much less
than this value. However, the phenomenon depicted in Fig. 2 for large PA still has a physical interpretation. It implies that
almost all the power absorbed is dissipated due to viscous losses in the transmission system, resulting in very poor effi-
ciency. For the case with PA < 0, power flows the other direction, actuating the flap. We see that when PA changes signs, there
is a kink in the curve, due to the change in the participation of the static efficiencies gm and gp in (90).

Because v is linearly related to x for this system, the ‘‘Gaussian Closure” approach implies that ðu;vÞ is jointly Gaussian
distributed as well, with zero mean and a covariance matrix equal to
Ruv ¼ E u2 uv
uv v2

" #( )
¼ Su Suv

Suv Sv

� �
ð91Þ
We thus have that the function w can be expressed directly in terms of Su; Suv , and Sv , as
w ¼
Z 1

�1

Z 1

�1

1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detRuv

p exp �1
2

u

v

� �T
R�1

uv
u

v

� �( )
PGðu;vÞdudv ð92Þ
This double integral can be shown to have a closed form, in terms of the loss model parameters fgp;gm; P0g as well as
fSu; Sv ; Suvg, as
w ¼ a1Suv � a2
SuSv þ 2S2uv

P0
þ �b1Suv þ b2

SuSv þ 2S2uv
P0

 !
cot�1 �Suvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SuSv � S2uv

q
0B@

1CAþ �b1 þ 3b2
Suv
P0

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SuSv � S2uv

q
ð93Þ
where
a1 ¼ 1
gmgp

a2 ¼ 1
gmg2

p
ð94Þ

b1 ¼ 1
p

1
gmgp

� gmgp

 !
b2 ¼ 1

p
1

gmg2
p
� gmg

2
p

 !
ð95Þ
and where cot�1ð�Þ, the inverse cotangent function, is in radians and taken to have a range from 0 to p.
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Fig. 2. Relationship between absorbed power PA and generated power PG , for the hydraulic PTO under consideration with gm ¼ 0:9.
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6.3. Sea state

The stochastic wave model was assumed to adhere to a JONSWAP spectrum [8]. This spectrum is fully characterized by its
significant wave height H1=3, its peak wave period T1, and its sharpness factor c. For the examples described here, c ¼ 2 was
assumed throughout. Meanwhile, H1=3 and T1 were varied, to illustrate the capabilities of the device and efficacy of the con-
trol design in varying sea conditions.

In reporting the results for the WEC under consideration, it will be useful to benchmark the power generation relative to
the incident power on the flap. For the normalization convention we use for the power spectral density SaðxÞ, this incident
power across a width w, for a given stochastic sea state at depth h, is
PI ¼ qgw
2p

Z 1

0

x
kðxÞ 1þ 2kðxÞh

sinhð2kðxÞhÞ
� �

SaðxÞdx ð96Þ
where q is the density of water, g is the gravitational constant, and kðxÞ is the wave number at frequency x; i.e., the real
solution to dispersion relation x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgkÞ tanhðkhÞ

p
.

6.4. Control optimization

With analytical expressions for bA0 and w, as described above, the methodology in Section 5 can then be used to design a

linear causal controller for the WEC system. Because the algebraic expressions for bA0 and w are complicated, the resultant
gradients that must be evaluated to solve optimization (57) are rather complicated, but tractable.

To design the observer, we assumed the signals available for feedback (i.e., y) are the angular position and velocity of the
flap; i.e.,
y ¼ Ch

Cv

� �
x ð97Þ
We note that this is the most conservative case of causal control design; i.e., when only the colocated position and velocity of
the PTO are available for feedback. However, it may be the case that other aspects of the dynamic response, including wave
elevations in the proximity of the flap, are also available. In such cases, performance can be expected to improve. However,
we will not explore this in the present paper.

To design the observer, some trial-and-error is used to specify N so that the error dynamics of the observer were of rea-
sonable bandwidth. The technique used was to first determine the mean-square value of vðtÞ for the uncontrolled system
(i.e., for u ¼ 0) in stationarity, and then to assign N such that the mean-square estimation error for vðtÞ is 10% of this value.
To choose the robustness factor q for the LTR adjustment to the observer, its value was assigned to that value which resulted
in a 1% reduction in the power generation performance below the case with q ¼ 0.
6.5. Equivalent damping optimization

As a point of comparison, controllers were also optimized which assume an ‘‘equivalent viscous damping” controller, i.e.,
a controller of the form
u ¼ Zv ð98Þ
where Z is the equivalent viscous damping gain. Note that this is a special case of the full-state feedback controller, when it is
constrained to the form
K ¼ ZCv ð99Þ
As such, the same optimization approaches mentioned in Section 5.1 to optimize K can be used to optimize Z. All that is
required is that in the iterative updating of K, we constrain the updates such that they retain the form above. Equivalently,
we can recognize that
@!
@Z

¼ @!
@K

CT
v ð100Þ
and iteratively solve for fZð0Þ; Zð1Þ; Zð2Þ; . . .g as
Zðkþ1Þ ¼ ZðkÞ þ d
@!
@K

CT
v






KðkÞ¼ZðkÞCv ;SðkÞ ;PðkÞ

ð101Þ
where, as before, d is a step size, chosen appropriately for smooth convergence.
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Fig. 3. Contour plot for v as a function of sea state parameters, with J evaluated analytically via Gaussian Closure.
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Fig. 4. Contour plot for m as a function of sea state parameters.
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6.6. Results

Define the capture efficiency v as
v ¼ J=PI ð102Þ

where PI is the incident wave power. Fig. 3 shows v achieved via the Gaussian Closure approach, for various values of sea
state parameters ðT1;H1=3Þ. These results reflect loss model parameters gm ¼ 0:75;gp ¼ 0:9, and P0 ¼ 8 MW.

The value of J used to obtain Fig. 3 is the analytical value assessed under the assumption of Gaussian Closure; i.e., it is not
the true value of the power generation resulting from a full nonlinear dynamic simulation. To illustrate the accuracy of the
approach, stochastic dynamic simulations were conducted for the nonlinear system, with the optimal controller in place, and
the following ratio was evaluated:
m ¼ Jjsimulation

Jjgaussian closure
ð103Þ
The value of J in simulation was assessed through a simple time average of PGðtÞ. This ratio is shown in Fig. 4. As can be seen,
the accuracy is reasonable except in sea states with extremely high H1=3 and low T1, which are unrealistic in any case. The
accuracy becomes lower in sea states with large H1=3 values, because the nonlinearities in the system dynamics becomemore
pronounced in high waves. As such, the assumption of gaussianity is less justified for responses in this regime.

Fig. 5 shows the ratio of J values for optimal causal control, over optimal static viscous damping. (The results are for the
simulated performances of the nonlinear system, with the respective optimal controllers in place.) We note that the marginal
improvement of optimal causal dynamic control, over static viscous damping, is more pronounced at lower wave heights.
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This is because larger wave heights result in more significant dissipations due to the nonlinear viscous damping of the flap,
and also larger dissipations in the power train. Also, we note that the marginal improvement is less effective when the sea
state has a peak wave period T1 which is close to the tuned natural period (i.e., 12 s) of the flap. This is consistent with the
well-known result that when a WEC is excited at its resonant frequency, the optimal control becomes viscous.

7. Summary

The primary purpose of this paper has been to put forth a generalized technique for the use of Gaussian Closure methods
to optimize causal controllers for WECs. Our focus has been on the use of these methods to accommodate nonlinearities in
the WEC dynamics, as well as to compensate for the losses incurred in the power train. Although we have provided an illus-
trative example of the application of the technique to a particular WEC system, the technique itself was presented in such a
way that it might be applicable to many technologies.
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